Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

Beyond Learning on Molecules by Weakly Supervising on Molecules

Add code
Feb 04, 2026
Viaarxiv icon

Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction

Add code
Feb 02, 2026
Viaarxiv icon

From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures

Add code
Feb 04, 2026
Viaarxiv icon

Entropy-Guided Dynamic Tokens for Graph-LLM Alignment in Molecular Understanding

Add code
Feb 02, 2026
Viaarxiv icon

Local-Global Multimodal Contrastive Learning for Molecular Property Prediction

Add code
Jan 30, 2026
Viaarxiv icon

Molecular Representations in Implicit Functional Space via Hyper-Networks

Add code
Jan 29, 2026
Viaarxiv icon

XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction

Add code
Jan 26, 2026
Viaarxiv icon

Disentangling multispecific antibody function with graph neural networks

Add code
Jan 30, 2026
Viaarxiv icon

Accelerating Large-Scale Cheminformatics Using a Byte-Offset Indexing Architecture for Terabyte-Scale Data Integration

Add code
Jan 26, 2026
Viaarxiv icon

PCEvo: Path-Consistent Molecular Representation via Virtual Evolutionary

Add code
Jan 27, 2026
Viaarxiv icon