Molecular Property Prediction


Molecular property prediction is the process of predicting the properties of molecules using machine-learning models.

$\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models

Add code
Aug 12, 2025
Viaarxiv icon

Discrete Diffusion-Based Model-Level Explanation of Heterogeneous GNNs with Node Features

Add code
Aug 11, 2025
Viaarxiv icon

HSA-Net: Hierarchical and Structure-Aware Framework for Efficient and Scalable Molecular Language Modeling

Add code
Aug 10, 2025
Viaarxiv icon

Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning

Add code
Aug 08, 2025
Viaarxiv icon

CROP: Integrating Topological and Spatial Structures via Cross-View Prefixes for Molecular LLMs

Add code
Aug 09, 2025
Viaarxiv icon

Hybrid Quantum--Classical Machine Learning Potential with Variational Quantum Circuits

Add code
Aug 06, 2025
Viaarxiv icon

Nested Graph Pseudo-Label Refinement for Noisy Label Domain Adaptation Learning

Add code
Aug 01, 2025
Viaarxiv icon

SmilesT5: Domain-specific pretraining for molecular language models

Add code
Jul 30, 2025
Viaarxiv icon

Heat Kernel Goes Topological

Add code
Jul 16, 2025
Viaarxiv icon

MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling

Add code
Jul 16, 2025
Viaarxiv icon